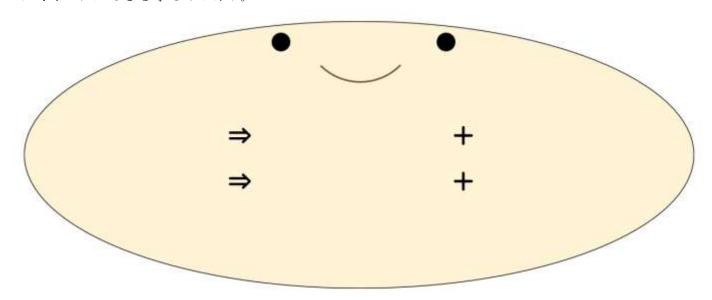
I 微生物の種類


月 日

1 酵母

1. 以下の食品の原材料を書け。

ビール	ワイン	パン	鰹節	
著作権者に掲載の許可を得ていないため非掲載				
原材料	原材料	原材料	原材料	
酵母を利用して	酵母を利用して	酵母を利用して	酵母を利用して	
(いる・いない)	(いる・いない)	(いる・いない)	(いる・いない)	
酒	味噌	醬油	納豆	
原材料	原材料	原材料	原材料	
酵母を利用して	酵母を利用して	酵母を利用して	酵母を利用して	
(いる・いない)	(いる・いない)	(いる・いない)	(いる・いない)	
2. 酵母を利用している食品の共通点は何か。				

4. 酵母のはたらきを考えてみよう。

5. パスツールの実験では発酵が進まず、ブフナーの実験では発酵が進んだ理由を考えよう。

著作権者に

掲載の許可

を得ていな

いため非掲

載

パスツールの行った実験

・発酵中のワインを加熱して酵母を死滅させると、それ以上発酵が進まなくなる

パスツールの考え

⇒糖分をアルコールや炭酸に変える物質は、酵母が生きていないと働かない

ブフナーの行った実験

・酵母をすりつぶして死滅させた液に砂糖を加えると、砂糖がアルコールと 炭酸ガス (二酸化炭素) に変化する

6. 酵母の特徴

☆形態 球型、楕円または卵型、ソーセージ型、偽菌糸型、レモン型、三角型 ☆大きさ 幅 $3\sim5\,\mu$ m、長さ $5\sim10\,\mu$ m

著作権者に掲載の許可を得ていないため非掲載

☆アルコール発酵 糖類をアルコール (エタノール) と二酸化炭素に変換する

☆単細胞生物

☆増殖① 出芽によって増殖することから、出芽菌とも呼ばれている

☆増殖② 有胞子酵母…環境条件が悪化すると有性生殖により子のう胞子を形成する 無胞子酵母…栄養生殖だけを行って胞子を形成しない

7.	酒の製造過程には	「糖化」	という工程がある。	この工程では何をしていると考えられるか。	

著作権者に掲載の許可を得ていないため非掲載

8.	酒の分類	
		著作権者に掲載の許可を得ていないため非掲載

I 微生物の種類

月 日

2 麹

1. 以下の食品の原材料を書け。

ビール	ワイン	パン	鰹節	
著作権者に掲載の許可を得ていないため非掲載				
原材料	原材料	原材料	原材料	
麹を利用して	麹を利用して	麹を利用して	麹を利用して	
(いる・いない)	(いる・いない)	(いる・いない)	(いる・いない)	
酒	味噌	醤油	納豆	
著作権者に掲載の許可を得ていないため非掲載				
原材料	原材料	原材料	原材料	
麹を利用して	麹を利用して	麹を利用して	麹を利用して	
(いる・いない)	(いる・いない)	(いる・いない)	(いる・いない)	

2. 麹の役割について考えてみよう。

著作権者に掲載の許可を得ていないため非掲載

- たんぱく質をアミノ酸に分解する「プロテアーゼ」でんぷんを糖に分解する「アミラーゼ」 脂質を分解する「リパーゼ」をはじめ、たくさんの酵素を生成する
- 4. 麹の形態 (麹菌の代表的な菌種であるアスペルギルス (Aspergillus) 属を扱う)

☆胞子 植物および菌類が無性生殖の手段としてつくる生殖細胞 親の体から離れて、雌雄に関係なく、それがそのまま発芽して繁殖の役目を果たす 胞子に対し細胞壁、細胞膜に包まれたふつうの細胞のことを栄養細胞という

著作権者に掲載の許可 を得ていないため非掲 載

- ・菌糸 多数に枝分かれした、幅が10~30μmの細長い糸状細胞 ⇒先端から栄養や水分を吸収する
- ・菌糸体 菌糸の集合体
- ・分生胞子 無性的に形成される胞子
- ・分生胞子柄 分生胞子の形勢に特化した菌糸
- ・子実体 分生胞子+梗子+頂のう
- ・梗子 胞子を支える役割
- ・頂のう 梗子の中軸となる
- ・隔壁 竹の節のようなしきり

※アスペルギルス属の胞子は無性的に形成される無性胞子である ※細胞の外部にできる胞子を外生胞子という

著作権者に掲載の許可を得ていないた め非掲載

5. 麹(アスペルギルス(Aspergillus)属)の子実体の名称を確認しよう

著作権者に掲載の許可を得ていないた	
め非掲載	

著作権者に掲載の許可を得ていないた め非掲載

7. 麹(アスペルギルス(Aspergillus)属)が増殖する様子をイラストで説明しよう

I 微生物の種類

月 日

3 カビ

1. カビの形態 (ペニシリウム (Penicillium) 属)

著作権者に掲載の許可を得ていないため非掲載

ペニシリウム (Penicillium) 属

参考資料 アスペルギルス (Aspergillus) 属

2. ペニシリウム (Penicillium) 属の特徴

☆通称 アオカビ

☆見た目 青緑色の集落

☆種類 約150菌種

☆特徴的な菌種

ペニシリウム・カマンベルティ(P.camemberti) チーズの製造に用いられる

ペニシリウム・シトリナム(P.citrinum) ペニシリウム・イスランジカム(P.islandicum) 黄変米の原因菌

ペニシリウム・ベロッコサム(P.verrucosum) オクラトキシンやペニシリン酸を産生

☆発生場所 もち、柑橘類、リンゴ、魚肉練り製品、清涼飲料水、サラミソーセージ、乳製品など 穀類、穀粉類などの食品、ほこり、土壌など広く環境中に分布する。